

Wie bleibt unser Geheimnis geheim? MuT, Wintersemester 2009/10

Jan Tobias Mühlberg & Johannes Schwalb muehlber@swt-bamberg.de

Lehrstuhl: Prof. Lüttgen, Softwaretechnik und Programmiersprachen http://swt-bamberg.de/

04. November 2009

Motivation

- ... bestimmt hast du ein Geheimnis, das niemand erfahren darf ...
- Themen rund um die *Kryptographie*:
 - Geheime Nachrichten verschicken
 - Codes knacken
 - Echtheit von Nachrichten

Skytale

- Vor 2500 Jahren von Lysander eingesetzt (Peloponnesischer Krieg)
- Stab senkrecht halten,
 Nachricht von oben nach unten schreiben
- Band abwickeln: fertig

- Klartext:
- Geheimtext:
- Schlüssel:
- Chiffre:
- Verschlüsseln:
- Entschlüsseln:

- Klartext: "SUSI IST VERLIEBT"
- Geheimtext:
- Schlüssel:
- Chiffre:
- Verschlüsseln:
- Entschlüsseln:

- Klartext: "SUSI IST VERLIEBT"
- Geheimtext: "svuesril iiesbtt "
- Schlüssel:
- Chiffre:
- Verschlüsseln:
- Entschlüsseln:

- Klartext: "SUSI IST VERLIEBT"
- Geheimtext: "svuesril iiesbtt "
- Schlüssel: der Stab bzw. dessen Umfang
- Chiffre:
- Verschlüsseln:
- Entschlüsseln:

- Klartext: "SUSI IST VERLIEBT"
- Geheimtext: "svuesril iiesbtt "
- Schlüssel: der Stab bzw. dessen Umfang
- Chiffre: das Verfahren
- Verschlüsseln: Text schreiben und abwickeln
- Entschlüsseln: aufwickeln und lesen

Caesar-Chiffre

- "... wenn etwas Geheimes zu überbringen war, schrieb er in Zeichen, das heißt, er ordnete die Buchstaben so, daß kein Wort gelesen werden konnte: Um diese zu lesen, tauscht man den vierten Buchstaben, also D für A aus und ebenso mit den restlichen."
 - Sueton, um 100

Caesar-Chiffre

Klar- und Geheimtextalphabete für die Caesar-Chiffre:

```
Klartext: a b c d e f g h i j k I m Geheimtext: D E F G H I J K L M N O P Klartext: n o p q r s t u v w x y z Geheimtext: Q R S T U V W X Y Z A B C
```

• Ein Beispiel:

DQJULIILPPRUJHQJUDXHQ ≈ angriffimmorgengrauen

Kryptoanalyse

 Entschlüsseln von verschlüsselten Nachrichten ohne den Schlüssel zu kennen:

Durchprobieren aller Schlüssel

Statistische Methoden

Oft noch einfacher: Social Engineering

Kryptoanalyse: Durchprobieren

- Wie groß ist denn der Schlüsselraum der Skytale und der Caesar-Chiffre?
- Moderne Chiffren: zwischen 10⁴⁰ und 10⁸⁰
 Möglichkeiten, je nach Anwendungsgebiet auch mal mehr

Kryptoanalyse: Statistik

Aufgabe: MYHUG BUK ZBZP ZPUK PT RPUV.

Kryptoanalyse: Statistik

- Aufgabe: MYHUG BUK ZBZP ZPUK PT RPUV.
- Buchstaben haben im Deutschen unterschiedliche Häufigkeit
- Erst kurze Worte untersuchen, dann schauen ob sich lange Worte entschlüsseln lassen

Kryptoanalyse: Statistik

- Aufgabe: MYHUG BUK ZBZP ZPUK PT RPUV.
- Buchstaben haben im Deutschen unterschiedliche Häufigkeit
- Erst kurze Worte untersuchen, dann schauen ob sich lange Worte entschlüsseln lassen
- Lösung: Caesar mit 7; "franz und susi sind im kino."

Social Engineering

- Geburtstage und Namen sind schlechte Schlüssel!
- "Hallo, ich bin Franz Mustermann und ich habe mein Passwort vergessen. Können Sie mir bitte ein neues geben?"
- "Hallo, ich bin von der Firma X und wir brauchen mal Ihr Passwort um ihren Telefonanschluss zu überprüfen."

- Nach Blaise de Vigenère, frz.
 Diplomat, 1523–1596
- Polyalphabetische Chiffre: jeder Buchstabe wird anders verschoben → es gibt mehrere Geheimtextalphabete
- Schlüssel ist eine Buchstabengruppe beliebiger Länge

- Schlüsselbuchstaben = Zeile,
 Klartextbuchstaben = Spalte
- Beispiel: Klartext ist "cafe",
 Schlüssel ist "bad"
- Geheimtext ist:

Α	В	С	D	E	F	G	Н
В	С	D	E	F	G	Н	I
С	D	Е	F	G	Н		J
D	Е	F	G	Н		J	K
Е	F	G	Н		J	K	L
F	G	Н		J	K	L	М
G	Н		J	K	L	М	N
Н	I	J	K	L	М	N	0

- Schlüsselbuchstaben = Zeile,
 Klartextbuchstaben = Spalte
- Beispiel: Klartext ist "cafe",
 Schlüssel ist "bad"
- Geheimtext ist: D...

Α	В	С	D	E	F	G	Н
В	С	D	E	F	G	Н	
С	D	E	F	G	Н		J
D	E	F	G	Н		J	K
Е	F	G	Н		J	K	L
F	G	Н		J	K	L	М
G	Н		J	K	L	М	N
Н	I	J	K	L	M	N	0

- Schlüsselbuchstaben = Zeile,
 Klartextbuchstaben = Spalte
- Beispiel: Klartext ist "cafe",
 Schlüssel ist "bad"
- Geheimtext ist: DA....

A	В	С	D	E	F	G	Н
В	С	D	Е	F	G	Н	I
С	D	Е	F	G	Н		J
D	Е	F	G	Н		J	K
Е	F	G	Н		J	K	L
F	G	Н		J	K	L	М
G	Н		J	K	L	М	N
Н	I	J	K	L	М	N	0

- Schlüsselbuchstaben = Zeile,
 Klartextbuchstaben = Spalte
- Beispiel: Klartext ist "cafe",
 Schlüssel ist "bad"
- Geheimtext ist: DAI...

Α	В	С	D	E	F	G	Н
В	С	D	Е	F	G	Н	
С	D	Е	F	G	Н		J
D	Е	F	G	Н		J	K
Е	F	G	Н		J	K	L
F	G	Н		J	K	L	М
G	Н		J	K	L	М	N
Н	I	J	K	L	М	Ν	0

- Schlüsselbuchstaben = Zeile,
 Klartextbuchstaben = Spalte
- Beispiel: Klartext ist "cafe",
 Schlüssel ist "bad"
- Geheimtext ist: DAIF

Α	В	С	D	Е	F	G	Н
В	С	D	Е	F	G	Н	
С	D	Е	F	G	Н		J
D	Е	F	G	Н		J	K
Е	F	G	Н		J	K	L
F	G	Н		J	K	L	М
G	Н		J	K	L	М	N
Н	I	J	K	L	М	Ν	0

Pause!

Pause!

Mechanische Verschlüsselung

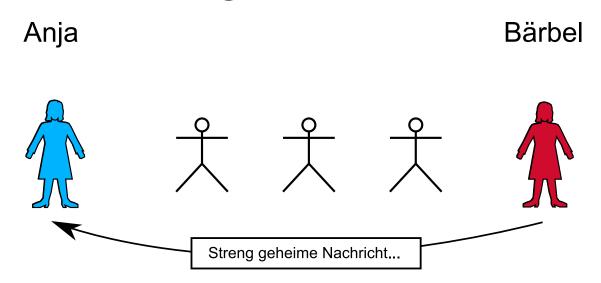
Kryha, etwa 1920, Deutschland

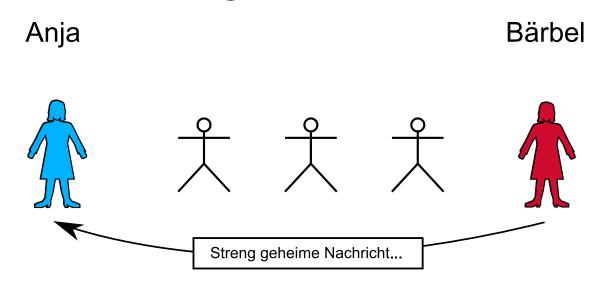
M-209, etwa 1930, Schweden und USA

Hebern-Maschine, 1917, USA

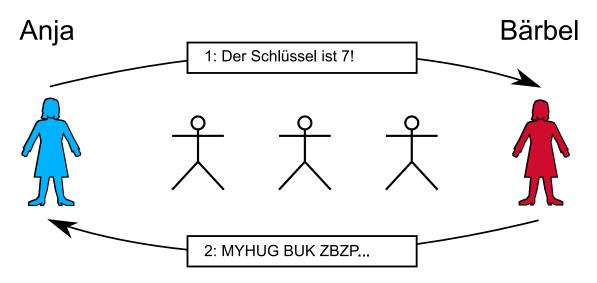
Enigma, 1. und 2. Weltkrieg, Deutschland

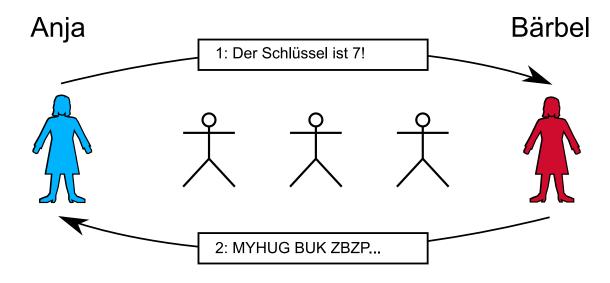
Und was kann man noch so damit machen?

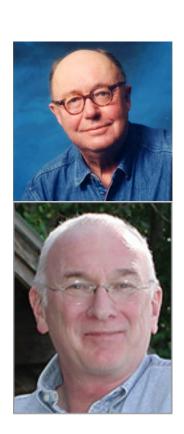

Und was kann man noch so damit machen?

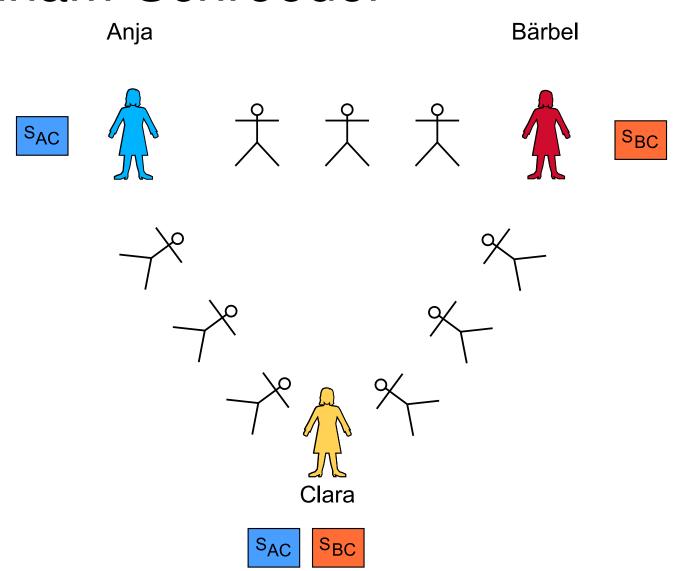

Schlüssel austauschen

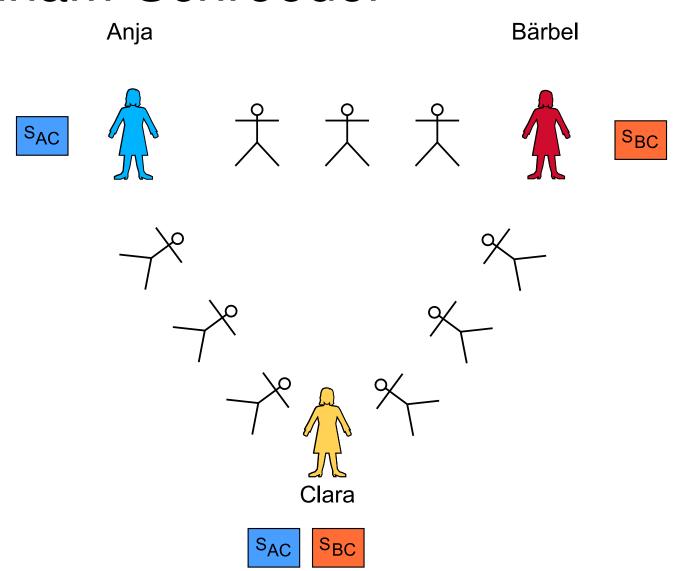
"Echtheit" von Nachrichten

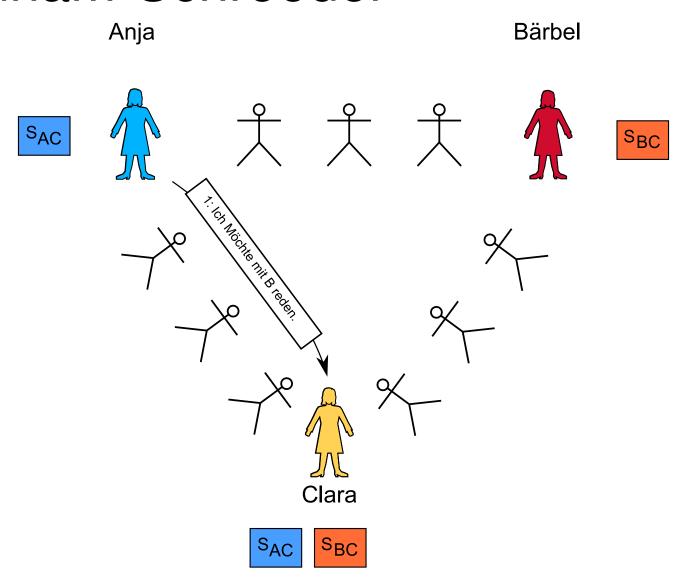

Wissen, mit wem man redet

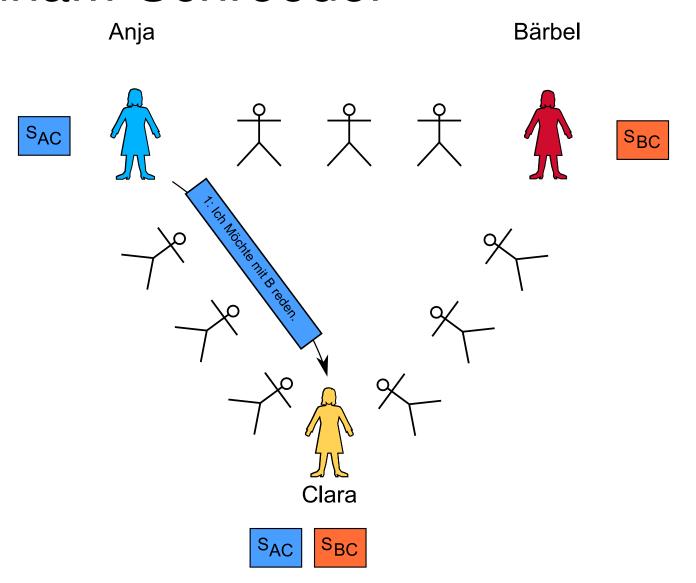

- Rede ich mit der "richtigen" Person?
- Stammt eine Nachricht tatsächlich vom angegebenen Absender?
- Traditionell:
 - Wissen (Losung)
 - Besitz (Schlüssel)
 - Biometrie (Fingerabdruck, Unterschrift)
- Aber: Über weite Entfernungen?

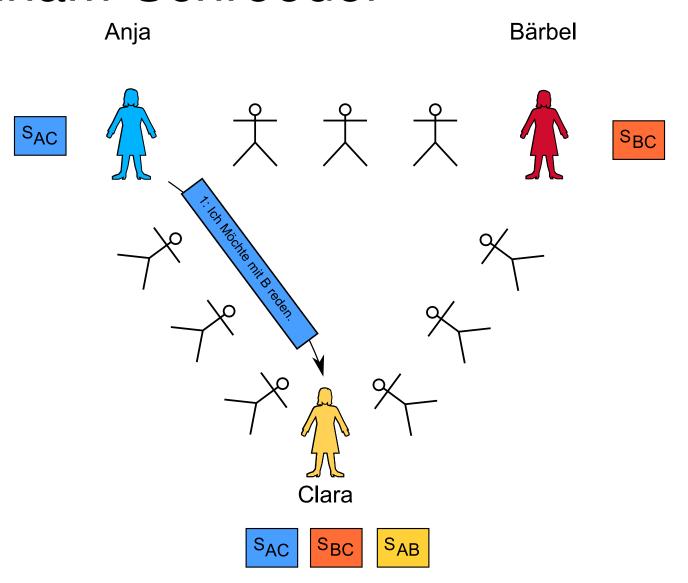

- Nachricht ist unverschlüsselt
- Jeder kennt Inhalt der Nachricht
- Nachricht kann verändert worden sein

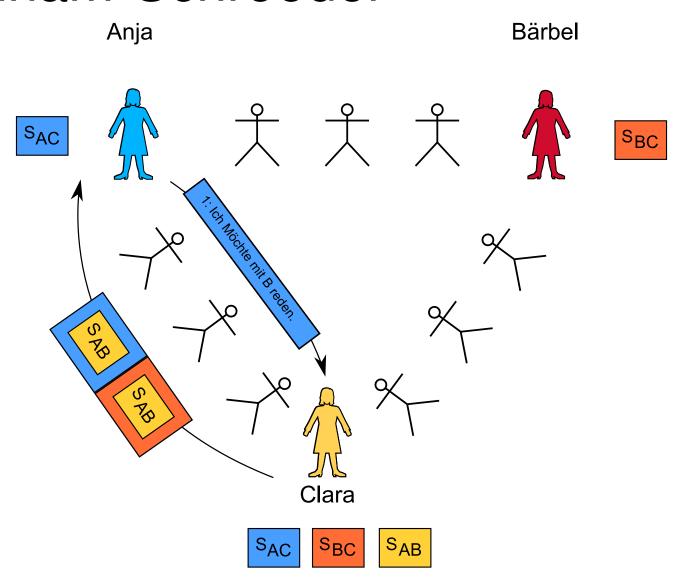


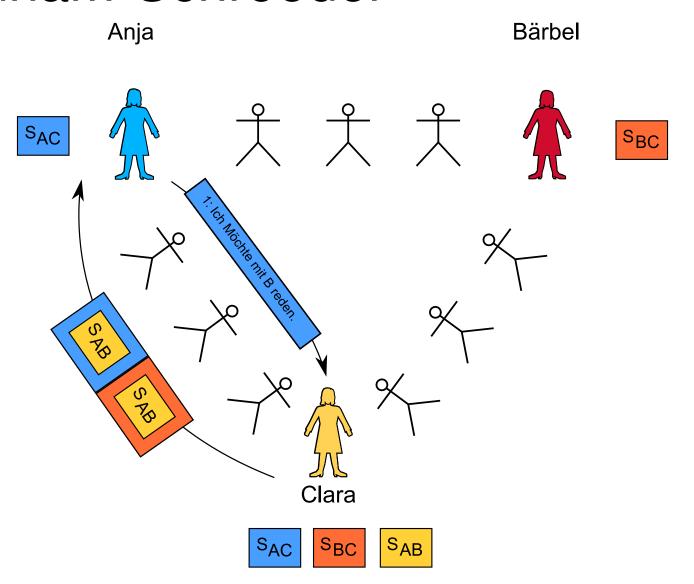

- Jeder kennt den Schlüssel
- Jeder kennt Inhalt der Nachricht
- Nachricht kann verändert worden sein

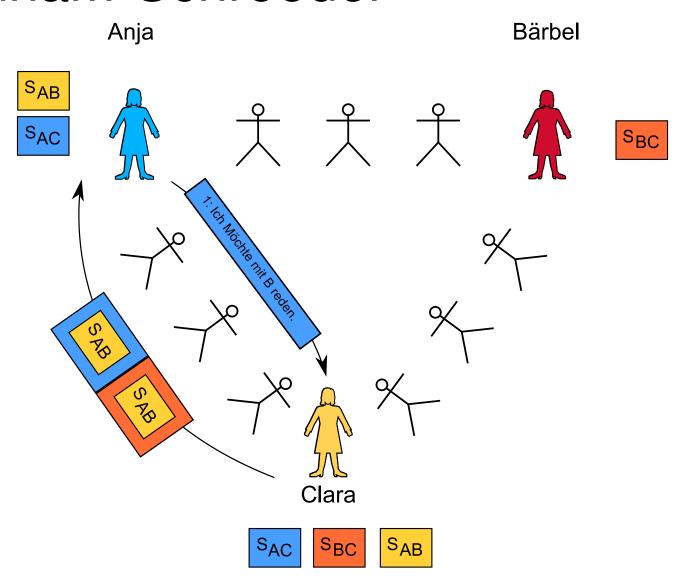

- Von Roger Needham und Michael Schroeder, 1978
- Personen Anja, Bärbel und Clara
- A und B wollen sicher miteinander kommunizieren
- C ist ein vertrauenswürdiger Dritter
- ullet Schlüssel: S_{AC} und S_{BC} ; geheim und nur A und C bzw. B und C bekannt

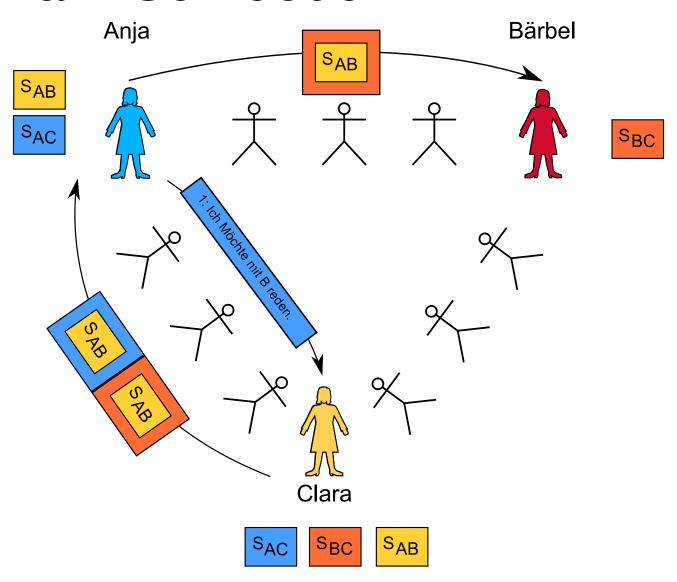


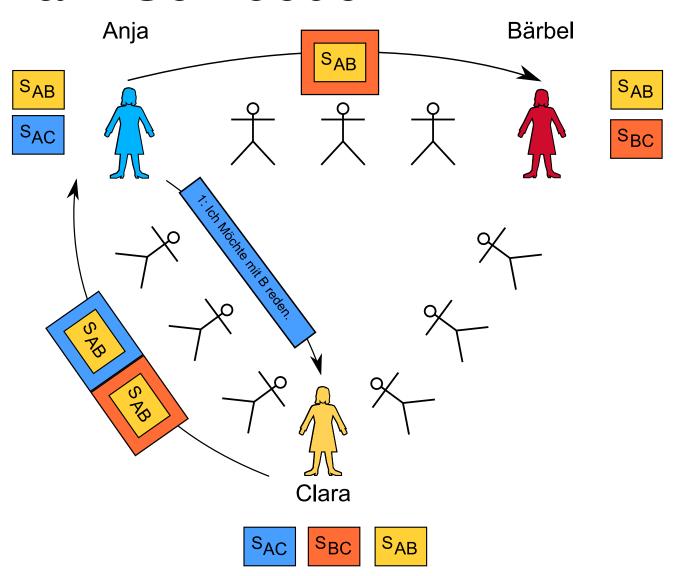



- Schritt 1:
 - A sendet "Ich möchte mit B reden.", verschlüsselt mit S_{AC} an C
- Schritt 2:
 - C erzeugt einen Schlüssel S_{AB}
 - C verschlüsselt S_{AB} , einmal mit S_{AC} und einmal mit S_{BC}
 - C sendet die Chiffrate an A

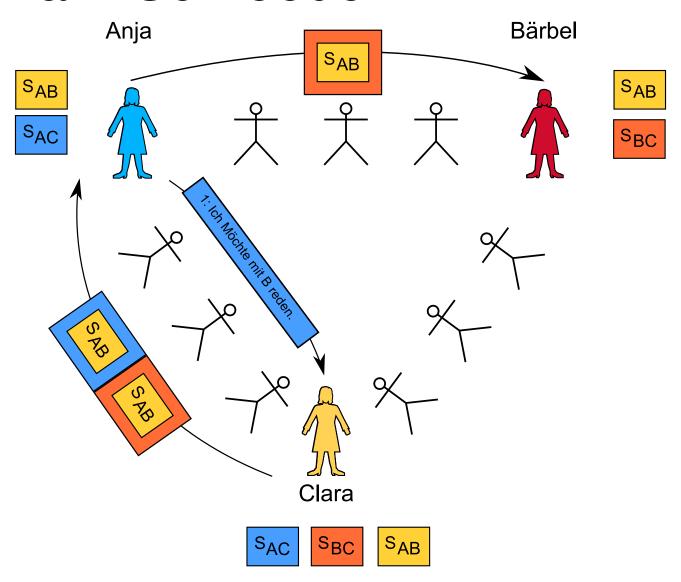


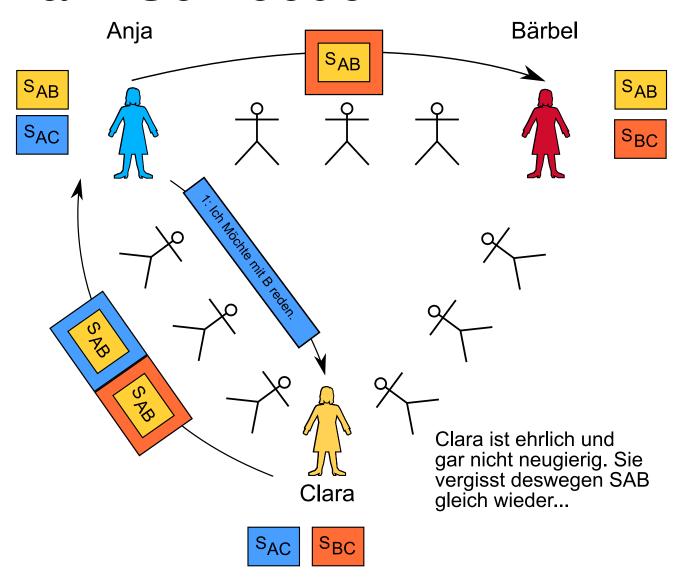


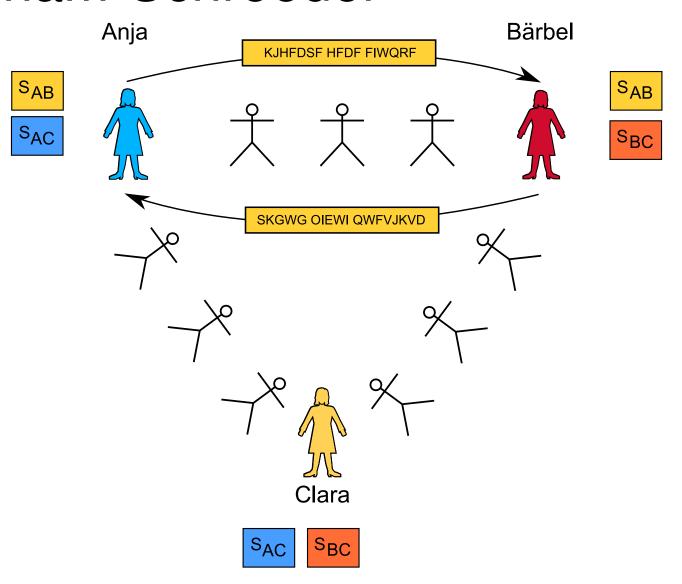




- Schritt 3:
 - A entschlüsselt 1. Teilnachricht und erhält S_{AB}
 - A sendet den zweiten Teil der Nachricht an B
- Schritt 4:
 - B entschlüsselt die Nachricht und erhält S_{AB}







- Alle Nachrichten waren verschlüsselt
- Niemand kann etwas verändert haben
- Bärbel weiß, dass A wirklich Anja ist
- A und B haben einen gemeinsamen Schlüssel um geheime Nachrichten auszutauschen

Geht das auch einfacher?

Geht das auch einfacher?

Njein: Asymmetrische Verschlüsselung...

Ausblick: Asymmetrische Verschlüsselung

- Jeder hat ein Schlüsselpaar: einen öffentlichen und einen geheimen Schlüssel
- Nachrichten, die mit dem öffentlichen Schlüssel verschlüsselt werden, können mit dem zugehörigen geheimen Schlüssel entschlüsselt werden
- Verschlüsseln und Signieren

Ausblick: Asymmetrische Verschlüsselung

- Asymmetrische Verschlüsselung für E-Mails:
 GNU Privacy Guard
- Anleitung:

```
http://de.wikibooks.org/wiki/GnuPG
```

• Technischer Hintergrund: http://de.wikipedia.

org/wiki/GNU_Privacy_Guard

Danke! Noch Fragen?

Bildnachweis

Die in diesem Vortrag verwendeten fotografischen Abbildungen entstammen dem zentralen Medienarchiv der Wikimedia Commons* und sind entweder gemeinfrei, unter einer GNU-Lizenz für freie Dokumentation, oder unter den Bedingungen einer Creative Commons-Lizenz veröffentlicht.

^{*}http://de.wikipedia.org/wiki/Hilfe:Wikimedia_Commons